scholarly journals A Variational Method for Computing Surface Heat Fluxes from ARM Surface Energy and Radiation Balance Systems

1997 ◽  
Vol 36 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Qin Xu ◽  
Chong-Jian Qiu
2010 ◽  
Vol 14 (3) ◽  
pp. 491-504 ◽  
Author(s):  
X. Xin ◽  
Q. Liu

Abstract. A Two-layer Surface Energy Balance Parameterization Scheme (TSEBPS) is proposed for the estimation of surface heat fluxes using Thermal Infrared (TIR) data over sparsely vegetated surfaces. TSEBPS is based on the theory of the classical two-layer energy balance model, as well as a set of new formulations derived from assumption of the energy balance at limiting cases. Two experimental data sets are used to assess the reliabilities of TSEBPS. Based on these case studies, TSEBPS has proven to be capable of estimating heat fluxes at vegetation surfaces with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties.


2009 ◽  
Vol 6 (6) ◽  
pp. 6795-6832
Author(s):  
X. Xin ◽  
Q. Liu

Abstract. A Two-layer Surface Energy Balance Parameterization Scheme (TSEBPS) is proposed for the estimation of surface heat fluxes using thermal infrared (TIR) data over sparsely vegetated surfaces. TSEBPS is based on the theory of the classical two-layer energy balance model, as well as a set of new formulations derived from assumption of the energy balance at limiting cases. Two experimental data sets are used to assess the reliabilities of TSEBPS. Based on these case studies, TSEBPS has proven to be capable of estimating heat fluxes at vegetation surfaces with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties.


2018 ◽  
Author(s):  
Lei Zhong ◽  
Yaoming Ma ◽  
Zeyong Hu ◽  
Yunfei Fu ◽  
Yuanyuan Hu ◽  
...  

Abstract. The estimation of land surface heat fluxes has significant meaning for energy and water cycle studies, especially for the Tibetan Plateau (TP), which has unique topography and strong land–atmosphere interactions. The land surface heating status also directly influences the movement of atmospheric circulation. However, for a long time, plateau-scale land surface heat flux information with high temporal resolution has been lacking, which greatly limits understanding of diurnal variations in land–atmosphere interactions. Based on geostationary and polar orbiting satellite data, a surface energy balance system (SEBS) was used in this paper to derive hourly land surface heat fluxes with a spatial resolution of 10 km. Six stations scattered through the TP and equipped for flux tower measurements were used to correct the energy imbalance problem existing in the measurements and to perform cross-validation. The results showed good agreement between derived fluxes and in situ measurements through 3738 validation samples. The RMSEs for net radiation flux, sensible heat flux, latent heat flux and soil heat flux were 76.63 W m−2, 60.29 W m−2, 64.65 W m−2 and 37.5 W m−2, respectively. The derived results were also found to be superior to GLDAS flux products (RMSEs for the surface energy balance components were 114.32 W m−2, 67.77 W m−2, 75.6 W m−2 and 40.05 W m−2, respectively). The diurnal and seasonal cycles of land surface energy balance components were clearly identified. Their spatial distribution was found to be consistent with the heterogeneous land surface status and general hydrometeorological conditions of the TP.


2019 ◽  
Vol 19 (8) ◽  
pp. 5529-5541 ◽  
Author(s):  
Lei Zhong ◽  
Yaoming Ma ◽  
Zeyong Hu ◽  
Yunfei Fu ◽  
Yuanyuan Hu ◽  
...  

Abstract. Estimation of land surface heat fluxes is important for energy and water cycle studies, especially on the Tibetan Plateau (TP), where the topography is unique and the land–atmosphere interactions are strong. The land surface heating conditions also directly influence the movement of atmospheric circulation. However, high-temporal-resolution information on the plateau-scale land surface heat fluxes has been lacking for a long time, which significantly limits the understanding of diurnal variations in land–atmosphere interactions. Based on geostationary and polar-orbiting satellite data, the surface energy balance system (SEBS) was used in this paper to derive hourly land surface heat fluxes at a spatial resolution of 10 km. Six stations scattered throughout the TP and equipped for flux tower measurements were used to perform a cross-validation. The results showed good agreement between the derived fluxes and in situ measurements through 3738 validation samples. The root-mean-square errors (RMSEs) for net radiation flux, sensible heat flux, latent heat flux and soil heat flux were 76.63, 60.29, 71.03 and 37.5 W m−2, respectively; the derived results were also found to be superior to the Global Land Data Assimilation System (GLDAS) flux products (with RMSEs for the surface energy balance components of 114.32, 67.77, 75.6 and 40.05 W m−2, respectively). The diurnal and seasonal cycles of the land surface energy balance components were clearly identified, and their spatial distribution was found to be consistent with the heterogeneous land surface conditions and the general hydrometeorological conditions of the TP.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

Sign in / Sign up

Export Citation Format

Share Document